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Abstract

We investigate preconditioners for solving steady or implicit-unsteady arbitrary-Lagrangian–Eulerian moving-mesh

formulations of incompressible free-surface and interfacial flow problems. The solution for the flow is obtained using

the artificial compressibility method combined with a multigrid cycle. To find the surface positions in a free-surface

problem, we use an iteration that is quasi-physical with the position of the free-surface driven by the kinematic condi-

tion. By modifying the fluxes through the free-surface and also using an iterative free-surface time step that is different

from the flow time-step, we are able to obtain convergence rates that are almost indistinguishable from those of a flow

without a free-surface. This is true in the limits of both large and small surface stresses such as gravity or surface tension

and also for all flow conditions (high or low Reynolds number or small implicit Courant–Friedrichs–Lewy number).

For interfacial flows, the free-surface preconditioner is extended by using a mass averaging technique. The iterative flow

time-step at the interface is a mass average of the time step for the flow conditions on either side of the interface and the

iterative time step for the kinematic condition is also based on mass-average quantities. We verify that this technique

produces the correct results in the limits of identical fluids or a free-surface flow. We also verify that it produces well-

conditioned results when the characteristic time scales of the two fluids are very different.
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1. Introduction

Arbitrary-Lagrangian–Eulerian (ALE) moving-mesh techniques have been used to simulate both unstea-

dy and steady incompressible free-surface and interfacial flow problems over a wide range of Reynolds, We-

ber, and Froude numbers. Examples range from flow over ship hulls at high Reynolds number [1,2] to
simulations of falling liquid droplets at low Reynolds number [3,4]. For the ship problem both

high- and low-Froude number conditions are relevant, and for the droplet high- and low-Weber number

conditions are also important. Although ALE techniques have been successfully used to simulate all of

these conditions, there is no preferred method for solving the non-linear system of equations that results

from an ALE discretization. As we discuss in the following, various methods have been used, and there

is little understanding of when each method works or which method works best.

Several different iterative techniques have been proposed to solve the equations governing the positions of

the surfaces in ALE formulations. These can be divided into two main categories: In the first, the error in the
kinematic condition (the condition that themass flux through the interface is zero) is used to drive the iteration

for the position of the interface [1,5–10]. This approach has been combined with various flow solvers including

artificial compressibility solvers [1,10], pressure-projection solvers [7,11,12], and stream-function-vorticity

[13] approaches because it corresponds to a physical evolution of the surface position. The other technique

is to drive the position of the surface using the error in the normal-stress boundary condition [3,7,14,15].

There has been little analysis of either of these two approaches. In general, the normal stress approach is

favored when the surface stresses either from surface tension or gravity are large [7]. In this paper, we focus

on the kinematic condition technique because it is quasi-physical and is also easier to implement than the
stress-driven technique. The goal is to develop an efficient iteration that can be used under all flow condi-

tions. Although the surface preconditioner we develop is designed to be combined with a artificial-com-

pressibility multigrid iteration, many of the results and analysis techniques can be generalized for other

flow solvers as well.

The paper is divided into two main topics: the optimization of the free-surface preconditioner and the

optimization of the interfacial flow preconditioner. Section 2 presents the governing equations for the flow

and free-surface. For the purpose of analysis, these equations are linearized around the state of a flat free

surface with a parallel uniform flow. Section 3 gives a discrete implementation of the linearized equations
that is vertex based on a structured mesh. In Section 4, we describe the artificial compressibility iteration

used to obtain the flow solution. Section 5 gives a continuous analysis of the coupled free-surface/artificial

compressibility problem. This gives insight into the expected behavior of the discrete free-surface problem.

We then describe the techniques used to analyze the discrete problem and optimize the free-surface precon-

ditioner in the limits of high and low Reynolds number and small implicit Courant–Friedrichs–Lewy (CFL)

number as well as large and small Froude and Weber numbers. Numerical tests are performed to confirm

that the preconditioner gives good results under all conditions. Section 6 examines the interfacial problem.

We give a discrete formulation for both inviscid and viscous interfacial flows and then discuss the modifi-
cations needed to the flow and free-surface preconditioners to obtain good results for interfacial problems.

Predictions from the analysis are numerically tested to show the effectiveness of the interfacial precondi-

tioner. Section 7 then concludes the paper.
2. Continuous problem

The problem we use to analyze different preconditioning schemes is an infinite-depth free-surface flow.
The free surface is positioned at y = 0, and the domain extends to negative infinity in the y-direction. A

gravitational force acts in the negative y-direction with gravitational acceleration g. Surface tension, r, is
also included. The flow is assumed to be incompressible with a constant fluid density, q, and dynamic
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viscosity, l. Because we are interested in analyzing an ALE moving-mesh discretization of this problem, the

governing equations are written in moving curvilinear coordinates, x(n,g,s), y(n,g,s), and s = t, where x

and y are the two-dimensional Cartesian coordinates, t is the time, and n, g, and s are the independent cur-
vilinear coordinates. In the following, subscripts of the curvilinear coordinates or the physical coordinates

denote differentiation.
In unsteady curvilinear coordinates, the incompressible Navier–Stokes equations are
oJ ½q; qU ; qV �T

os
þ o

on
Jðnx~pþ ny~qÞ þ

o

og
Jðgx~pþ gy~qÞ ¼

o~r

on
þ o~s

og
þ ½0; 0; qgJ �T: ð1Þ
The Jacobian, J, and the inverse metrices nx, ny, gx, and gy are determined from the linearization of the

curvilinear transformation. U and V are the flow velocity components in the x- and y-coordinate directions,

respectively.

The inviscid fluxes, ~p and ~q, are given by
~p ¼
qðU � xsÞ

qUðU � xsÞ þ P

qV ðU � xsÞ

8><
>:

9>=
>;; ~q ¼

qðV � ysÞ
qUðV � ysÞ

qV ðV � ysÞ þ P

8><
>:

9>=
>;; ð2Þ
where P is the pressure.
~r and~s are the components of the viscous stress tensor in curvilinear coordinates
~r ¼ Knn o

on
þKng o

og

� �
½0;U ; V �T; ~s ¼ Kgn o

on
þKgg o

og

� �
½0;U ; V �T: ð3Þ
The matrices Km n with m,n = n,g have the general form
Kmn ¼ lJ

0 0 0

0 ð2mxnx þ mynyÞ mynx
0 mxny ð2myny þ mxnxÞ

2
64

3
75: ð4Þ
For convenience, we also introduce the total flux vectors in the n and g directions, ~e ¼ Jðnx~pþ ny~qÞ�
~r and~f ¼ Jðgx~pþ gy~qÞ �~s.

For the analysis, we specialize the above formulation to the case of a nearly planar free-surface located at

y = 0. We assume that the moving coordinates are of the following specific form:
x ¼ Dxn; y ¼ Dygþ hðn; sÞ; ð5Þ

where Dx and Dy are the horizontal and vertical mesh spacings. This corresponds to a uniform mesh in the

x-direction. The y mesh positions are also uniformly spaced, but with a vertical offset, h(n,s), for any col-

umn of vertices. h is the height of the free surface, thus any vertical column of mesh points translates rigidly
with the position of the free surface. The results presented in the following are insensitive to the particular

choice of mesh movement scheme.

In these coordinates, Eq. (1) becomes
DxDy½q; qU ; qV �T
� �

s
þ ðDy~pÞn þ ðDx~q� hn~pÞg ¼~rn þ~sg þ ½0; 0; qgDxDy�T: ð6Þ
The inviscid fluxes simplify to
~p ¼
qU

qU 2 þ P

qVU

8><
>:

9>=
>;; ~q ¼

qðV � hsÞ
qUðV � hsÞ

qV ðV � hsÞ þ P

8><
>:

9>=
>;: ð7Þ
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The specific form of the viscous fluxes,~r and~s, can be determined from Eqs. (3) and (4). The viscous fluxes

involve both the flow velocities and the free-surface height because of the movement of the mesh with the

free surface. A linearized form is given in the following.

To analyze the above-governing equations, we linearize around the steady-state solution of a uniform

horizontal velocity, u1, a flat free surface, and the hydrostatic pressure, P = �qgy. The perturbation to
the horizontal and vertical flow velocity, pressure, and free-surface height are given by u, v, p, and h, respec-

tively. The linearization of the governing equations is given by
DxDy

0 0 0

0 1 0

0 0 1

2
64

3
75ws þ~en þ~fg ¼ 0; ð8Þ
where
w ¼
p

u

v

2
64
3
75; ð9Þ
the linearized total fluxes,~e and~f, are given by the following relations:
~e ¼ Axw� Nxxwn � Nxywg; ð10Þ

~f ¼ Ayw� Ay

0

0

hs

2
64

3
75� hn

qbu1

u21

0

2
64

3
75� Nyxwn � Nyywg; ð11Þ

Ax ¼ Dy

0 qb 0

1=q 2u1 0

0 0 u1

2
64

3
75; Ay ¼ Dx

0 0 qb

0 0 u1

1=q 0 0

2
64

3
75; ð12Þ

Nxx ¼
mDy
Dx

0 0 0

0 2 0

0 0 1

2
64

3
75; Nxy ¼ m

0 0 0

0 0 0

0 1 0

2
64

3
75; ð13Þ

Nyx ¼ m

0 0 0

0 0 1

0 0 0

2
64

3
75; Nyy ¼

mDx
Dy

0 0 0

0 1 0

0 0 2

2
64

3
75: ð14Þ
In addition to linearizing the governing equations, we have also divided the momentum equations by q and

multiplied the continuity equation by an artificial compressibility constant b which is described in the flow

preconditioning section. The matrices denoted with N are the linearized form of Eq. (4), where l is replaced

by the kinematic viscosity m because we have divided by q. The second and third terms of~f are not functions
of g, and thus do not affect Eq. (8). However, we keep these terms in the formulation because it makes the

following discussion of the boundary conditions simpler.

The linearized free-surface boundary conditions specify the flux of mass and the stresses on the free
surface. These conditions can be written compactly as
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~f jy¼h ¼ 0; 0;Dxgh� r
qDx

hnn

� �T
: ð15Þ
The first two components of this equation enforce the condition that the total flux of mass and the total flux

of horizontal momentum through the free surface are zero. The last component states that the total flux of

vertical momentum is determined by the applied stress to the free surface. This can be seen more clearly be

expanding~f. The three equations can then be shown to be curvilinear-coordinate forms of: the kinematic

condition,
Dxbq ðv� hsÞ � u1
hn
Dx

� �
¼ 0; ð16Þ
which enforces the fact that there is no convective flux through the free surface, a linear combination of the

kinematic condition and the shear stress condition,
Dx
q

qu1 ðv� hsÞ � u1
hn
Dx

� �
� l

vn
Dx

þ ug
Dy

� �� �
¼ 0; ð17Þ
which makes the shear stress zero, and the normal stress condition,
Dx
q

p � 2l
vg
Dy

¼ qgh� r
hnn
Dx2

� �
: ð18Þ
For the boundary at y = �1, we require that the flow perturbations decay to zero. In the x-direction, the

domain is assumed to be infinite.
3. Discrete governing equations

The above equations are made discrete in time using an implicit Euler backwards difference scheme with

time step, Ds. The backwards difference terms from previous physical time steps are ignored because they

are constant during the iterative procedure and have no effect on the conditioning of the system. The spatial

discretization is vertex based on a structured quadrilateral mesh. The following is the discrete form of the

linearized governing equations:
DxDy

0 0 0

0 Ds�1 0

0 0 Ds�1

2
64

3
75 wj;k þ ð~ejþ1=2;k �~ej�1=2;kÞ þ ð~f j;kþ1=2 �~f j;k�1=2Þ ¼ 0; ð19Þ

~ej�1=2;k ¼ Ax
wj;k þ wj�1;k

2
� 1

2
Dxðwj;k � wj�1;kÞ � Nxxðwj;k � wj�1;kÞ

� Nxy
wj;kþ1 � wj;k�1 þ wj�1;kþ1 � wj�1;k�1

4
; ð20Þ

~f j;k�1=2 ¼ Ay
wj;k þ wj;k�1

2
� 1

2
Dyðwj;k � wj;k�1Þ � Nyx

wjþ1;k � wj�1;k þ wjþ1;k�1 � wj�1;k�1

4

� Nyyðwj;k � wj;k�1Þ; ð21Þ
j and k are the horizontal and vertical node indices, respectively. k = 0 is the free surface and k decreases

with depth below the free surface. Dx and Dy are artificial dissipation matrices. These are given by
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Dx ¼

1 0 0

0 u1=
ffiffiffiffiffiffiffiffi
b=3

p
0

0 0 u1=
ffiffiffiffiffiffiffiffi
b=3

p
2
664

3
775jAxj; ð22Þ

Dy ¼
1 0 0

0 u1=
ffiffiffiffiffiffiffiffi
b=3

p
0

0 0 u1=
ffiffiffiffiffiffiffiffi
b=3

p
2
64

3
75jAy j: ð23Þ
jAj is defined as VjKjV�1, where V and K are determined from the eigenvalue problem A V = VK. The rea-
son for choosing this form of the dissipation matrices is discussed in Section 4. Although the spatial and

temporal schemes are both only first-order accurate, they provide enough insight to determine an optimal

preconditioner.
Because the spatial discretization is vertex based, there are values of u,v, and p located on the free sur-

face. The free-surface boundary conditions are enforced by applying conservation of mass and momentum

to a half volume surrounding the nodes on the free surface. The flux at the free surface is given by Eq. (15)

with the normal stress approximated by qghj � r(hj+1 � 2hj + hj�1)/Dx
2. The equations governing the free-

surface nodes are then
DxDy
2

0 0 0

0 Ds�1 0

0 0 Ds�1

2
64

3
75 wj;k þ

1

2
ð~ejþ1=2;0�~ej�1=2;0Þþ 0;0;Dxghj �

r
qDx

ðhjþ1� 2hjþ hj�1Þ
� �T

�~f j;�1=2 ¼ 0:

ð24Þ

These equations are not quite correct because the Nxywg term in the~ejþ1=2;0 and ~ej�1=2;0 fluxes has a depen-

dence on k + 1 (see Eq. (20)). To eliminate this dependence, these fluxes are calculated using a one-sided

stencil
�Nxy
wj;0 � wj;�1 þ wj�1;0 � wj�1;�1

2
: ð25Þ
This is then well defined at the free surface. Notice that p is allowed to be an independent variable at the free

surface which is solved for by enforcing conservation. This implementation of the free-surface boundary

condition arises naturally in ALE finite-volume discretizations and also in ALE finite-element discretiza-

tions where the convective terms are integrated by parts.

The evolution of h is determined by the kinematic condition. The discrete linear form of the kinematic

boundary condition is given by
Dx
hj
Ds

� vj

� �
þ u1

hjþ1 � hj�1

2
� ju1j

hjþ1 � 2hj þ hj�1

2
¼ 0: ð26Þ
This is an upwind discretization based on the free-stream velocity, and we again have used a one step back-

wards-difference in time and ignored the terms from previous time steps.
4. Flow preconditioning

The iteration used to solve the flow equations is based on the artificial compressibility method [16]. The

following equation defines this iteration:
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DxDy
Ds�

owj;k

os�
þ Rj;kðwÞ ¼ 0; ð27Þ
where Rj,k(w) is the residual error in Eq. (19) at the point j,k evaluated using the current estimate of the solu-

tion. This residual is used to drive a pseudo-time evolution in s*.When this evolution reaches steady state, the

residual is zero and we have solved the discrete equations. This is the simplest form for an artificial compress-

ibility conditioner. There are other slightly more complex forms, which are discussed in [17] and also [18].

There are two parameters in this iterative scheme, Ds* and b. The choice of these parameters can strongly

affect the convergence rate of the system. We use the values determined in the analysis given in [19]. These

are given by
b ¼ 3ðU 2 þ V 2Þ þ ðmaxðDx;DyÞ=ð2DsÞ þ 2m=maxðDx;DyÞÞ2 ð28Þ

and ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiq� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiq� �
1=Ds� ¼ 2 U þ U 2 þ b =Dxþ 2 V þ V 2 þ b =Dy þ Ds�1 þ 8mð1=Dx2 þ 1=Dy2Þ: ð29Þ
These parameters have been optimized using a model problem similar to the one used here except without

the free surface. They should give good convergence rates for all limiting flow conditions, including Stokes

flow, inviscid flow, and small implicit CFL number (Dsu1/Dx).
The dissipation matrices, Dx and Dy, shown in Eqs. (22) and (23) are based on the characteristics of the

artificial compressibility system. In the inviscid limit, the matrix pre-multiplying jAxj and jAyj is the identity
matrix and the scheme is a first-order accurate upwind discretization. For Stokes flow conditions and small

CFL numbers, the premultiplication matrix reduces the magnitude of the dissipation from that of a char-

acteristic upwind discretization. This was determined to be necessary in [19] by comparing to the stream-
wise-upwind-Petrov–Galerkin (SUPG) stabilized finite-element scheme of Brooks and Hughes [20], which

gives optimal accuracy for incompressible flow.

In practice, an explicit Runge–Kutta (RK) scheme [21] is often used to update the solution in s* and the

iteration is combined with a multigrid cycle to achieve good convergence rates [1,22,10]. For the purpose of

identifying an optimal free-surface preconditioner, it is adequate to analyze the eigenvalues of the semi-

discrete system. In the optimization, we concentrate on the conditioning of the high-wave number modes

so that the relaxation scheme will perform well in a multigrid cycle. We note that for flows without a free

surface, reference [19] shows that this iterative scheme gives good results for Stokes flow and for small CFL
number problems. For the inviscid limit, the convergence rate is not as good. This problem will be apparent

in our numerical tests of the free-surface preconditioner, however it does not invalidate the analysis of the

free-surface preconditioner.
5. Free-surface preconditioning

We now examine the free-surface problem. As mentioned in the introduction, there are two main types
of iterative approaches for solving free-surface problems. In the first, the free surface position is driven by

the residual of the kinematic condition [1,5–10]. This approach has dynamics similar to the physical system.

In the second, the free-surface position is driven by the imbalance in the normal stress at the free surface

[3,7,14,15]. Because the first approach is more physical and also easier to implement than the second, we

determine whether this approach can be well conditioned in all limits. The form for the preconditioner

is given by
Dx
Ds�fs

ohj
os�

þ Rfs;jðw; hÞ ¼ 0; ð30Þ
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where Rfs,j is the residual of the kinematic equation, Eq. (26) at the point j. Ds�fs is a time step for the free

surface which may be different than Ds*. The values of u, v, and p at the free surface are driven in exactly the

same manner as the rest of the flow which makes this easy to implement.
5.1. Analytic results

To understand this problem, it is helpful to begin with an examination of the spatially continuous form

of the artificial compressibility iteration and free-surface iteration (Eqs. (27) and (30)). The spatially con-

tinuous form of the discrete residual operators in these equations is given by Eq. (8) for the flow and

Eq. (16) for the kinematic condition except that the physical time derivative operator is replaced by

1/Ds. Eq. (16) is also divided by qb to put it in the same form as the discrete kinematic condition (Eq.

(26)). We assume a value of unity for Ds� and Ds�fs. In this case, s* is a dimensional time. The boundary

conditions are those given in the section describing the continuous problem. Analytic results can be
obtained for this problem that give us insight into the fully discrete system.

We begin with the inviscid case. A Fourier transform is performed in the x-direction which eliminates all

the spatial derivatives in x. We then substitute ŵðkx; y; tÞ ¼ ŵðkx; yÞeks
�
. For any wavenumber kx, this leaves

us with a linear system of three ordinary differential equations in y which has k and kx as parameters. This

system has the form
Ikþ 1

Ds

0 0 0

0 1 0

0 0 1

2
64

3
75� ikxAx

0
B@

1
CAŵþ Ay

oŵ
oy

¼ 0: ð31Þ
Assuming exponential behavior in y results in a generalized eigenvalue problem for the spatial decay or

growth rates in y. Assuming that the temporal eigenvalue k, is in the left half of the complex plane, we find

one eigenmode that is constant in y, one that exponentially decays as y goes to negative infinity, and one

that exponentially grows as y goes to negative infinity. Applying the condition that the perturbations decay

at negative infinity leaves us with one eigenmode. The form and spatial decay rate of this eigenmode is a

function of k and kx.

At the free surface, we have two constraints, namely the kinematic condition and the normal stress con-

dition. After application of the Fourier transform, the kinematic condition becomes
ðkþ 1=Ds� ikxu1Þĥ� v̂ ¼ 0 ð32Þ

and the normal stress condition becomes
p̂ ¼ ðqg þ rk2xÞĥ: ð33Þ
The Fourier transform of the normal stress condition shows that for any wavenumber, we do not have to

separately investigate surface tension and gravity effects. The only thing that is important is the magnitude
of ðqg þ rk2xÞ. For simplicity, in the following, we set r to zero and only examine the effect of gravity.

Substituting the exponentially decaying eigenmode into the normal stress condition and eliminating h

with Eq. (32) gives a compatibility condition that determines k. For inviscid flow, a totally general solution

for k can be found as function of Ds, u1, b, and g. This expression is rather lengthy so we focus only on

certain limits. When 1/Ds = 0, the following expression for k holds:
k ¼ ikxu1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
g �g þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ 4k2xbu21 þ 4k2xb

2
q� �

2b

vuuut
: ð34Þ
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When g = 0, k is ikxu1. In this limit, any free-surface oscillation is convected by the free-stream velocity u1
and therefore oscillates with a frequency of kxu1. We expect the free-surface problem to be well condi-

tioned in this limit because the free-surface eigenvalue is similar in magnitude to the flow eigenvalues.

A good check on the analysis is the limit of b going to infinity. This drives the artificial speed of sound to

infinity and should reproduce classical results for incompressible flows. In the limit of b going to infinity, we
arrive at
k ¼ ikxu1 � i
ffiffiffiffiffiffiffi
kxg

p
; ð35Þ
which is exactly the classical result for the oscillation of a free-surface wave. This shows that if a fully

incompressible algorithm is used to find steady-state solutions, there is an additional stability constraint

proportional to the square root of the gravitational constant. For problems with strong gravitational or

surface tension effects, this can seriously limit the rate of convergence to steady state.

When b is fixed and we take the limit of g going to infinity, we obtain the following expression for k:
k ¼ ikx u1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u21 þ b

q� �
: ð36Þ
In this case, the oscillation rate is determined by the artificial speed of sound in the x-direction. (The arti-

ficial speed of sound in the x-direction is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u21 þ b

p
.) This value does not increase with g. Thus, when using

the artificial compressibility method, there should not be any additional time step constraint as g goes to

infinity. Unfortunately, as we shall see later, this does not turn out to be true because of the method of

implementing the boundary conditions in the discrete system.

A final case is when 1/Ds is not equal to zero, but instead approaches infinity. Using the optimal value

for b, we arrive at the following expression for k:
k ¼ Ds�1: ð37Þ

In this limit, we expect that the system will be well conditioned because the characteristic free-surface rate is
similar in magnitude to the flow eigenvalues.

For the viscous case, even when g is equal to zero, there is poor conditioning because the flow time scale

is on the order of 1=ðmk2xÞ while the free-surface time scale is 1/(u1kx). In the limit that the Reynolds number

goes to zero, the ratio of these goes to infinity. This problem is easily eliminated because the free surface and

the flow are totally decoupled when g is zero. We can simply take different pseudo-time steps for the flow

and the free surface and get a well-conditioned problem. This is shown in the following section. For finite

values of g, we are not able to obtain any valuable information from the continuous system. This limit is

only studied using numerical techniques.
5.2. Discrete analysis techniques

Given this baseline understanding of the free-surface problem, we now examine the fully discrete system.

We have two methods of analyzing this system. The first is a brute force technique: We Fourier transform

the discrete system in n, which for any kx reduces the problem to an unsteady one-dimensional problem.

The eigenvalues of this problem are then found numerically. When using this technique, the results are

obtained on a mesh with 100 points, k going from 0 to �99. k = 0 again corresponds to the free surface.
At the bottom boundary, we assume that there is a point at k = �100 at which the values of u, v, and p

are all zero. This eigenvalue problem gives a set of 301 eigenmodes, one for the flow variable at each point

plus one for h at the free surface.

Usually, we find at the most four modes that exponentially decay as y goes to infinity. The remaining

modes are all oscillatory. We refer to these four exponentially decaying modes as the free-surface modes.

In comparison with the analytic case, we have four free-surface eigenvalues/eigenmodes instead of two
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(given by the plus/minus in Eq. (34)). The two additional modes are a result of the implementation of the

boundary conditions; Instead of eliminating the pressure on the free surface using the normal stress condi-

tion, we solve a dynamic equation for the pressure. This gives rise to additional free-surface modes. We call

these modes the discrete free-surface modes when we need to distinguish them from the free-surface modes

that have an analog in the continuous analysis.
The above technique is rather time consuming because it requires the solution of a 301-dimensional

eigenvalue problem. Furthermore, when a surface parameter such as g or r is changed, only the eigenvalues

of the four free-surface modes change. The remaining eigenvalues remain unchanged. Because we are

mainly interested in the free-surface modes, we use a technique similar to that used to obtain the analytic

solutions: The equations are Fourier transformed in n and an exponential dependence in s* is assumed, eks
�
.

This leaves a one-dimensional linear finite-difference problem. This finite-difference problem is written as
M � 2D Dþ C

�I 0

� �
ŵk

ŵþ
k

� �
þ

D� C 0

0 I

� �
ŵk�1

ŵþ
k�1

� �
¼ 0; ð38Þ
where each entry in the above block matrix is a 3 · 3 matrix. The last three equations are a shift operator so

we can write the equations as a function of k and k � 1 without explicitly referencing k + 1. The auxiliary

variables ŵþ
k are equal to ŵkþ1. The matrices M, D, and C are given by
M ¼ DxDy

k
Ds� 0 0

0 k
Ds� þ 1

Ds 0

0 0 k
Ds� þ 1

Ds

2
64

3
75þ Axi sinðkxDxÞ �

jAxj
2

þ Nxx

� �
2ðcosðkxDxÞ � 1Þ; ð39Þ

C ¼ 1

2
ðAy � ðNyx þ NxyÞi sinðkxDxÞÞ; ð40Þ

D ¼ � jAy j
2

þ Nyy

� �
: ð41Þ
Assuming the solution is of the form ŵk ¼ ŵ0rk where ŵ0 is the solution at the free surface and r is the geo-

metric growth or decay factor, we again have a generalized eigenvalue problem which can be solved for r

and the eigenvector, ŵ0. In the viscous case, if we assume k is in the left half plane, we find that three of the

six eigensolutions decay as k approaches negative infinity (r > 1). The inviscid case is slightly more compli-
cated and is discussed after we explain the viscous case.

Given these three eigensolutions, we then examine the free-surface equations to arrive at a compatibility

condition for k. We assume that w is a linear combination of the three decaying eigenvectors,

ŵ0;1; ŵ0;2; and ŵ0;3, with one of the three modes normalized to have magnitude unity, i.e.,

ŵ0 ¼ ŵ0;1 þ c2ŵ0;2 þ c3ŵ0;3 and ŵ�1 ¼ ŵ0;1r�1
1 þ c2ŵ0;2r�1

2 þ c3ŵ0;3r�1
3 . These expressions are inserted into

the three conservation equations at the free surface and the kinematic equation is used to eliminate any

dependence on h. This gives three equations and three unknowns: c2, c3, and k. The conservation equations

are linear in c2 and c3 so these variables are eliminated to leave an equation for k. Analytic solutions are not
possible, so an initial guess is given for k and the above procedure is combined with a Newton–Raphson

iteration to find solutions. The values of k found in this manner coincide almost exactly with the eigenvalues

of the free-surface modes found using the brute-force approach. Minute differences occur because the full

eigenvalue problem only has 100 points and does not extend to negative infinity.

For the inviscid case, we find one mode that decays as k goes to negative infinity, one mode that grows as

k goes to negative infinity, two modes that have infinite values of r, and two modes that have zero values of

r. An infinite value of r corresponds to a mode which has no coupling to the k + 1 point in the upwind

scheme. A zero value of r corresponds to a mode which has no coupling to the k � 1 point. The decoupling
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arises because the upwind scheme only involves a 2-point stencil. Generalizing the previous procedure, we

choose the three modes which have r > 1. This corresponds to picking the decaying mode and the two

modes that are uncoupled from the equations at point k = �1 for the solution at the free-surface point,

k = 0. The procedure for finding the compatibility condition is identical to that for the viscous case. Results

obtained in this manner again agree almost exactly with the brute force method.

5.3. Inviscid, steady flow

We begin by examining inviscid steady flow with Ds�fs ¼ Ds�. b and Ds* are given by Eqs. (29) and (28).

Fig. 1 shows the eigenvalue spectrum when kxDx = 2p/32. The points marked with an · (black) are the

eigenvalues of the full 301-dimensional eigenvalue problem. The solid (red) curves trace the evolution of

the free-surface modes as gDx=u21 goes from 10�2 to 102. These curves are found using the Newton–Raph-

son technique for the free-surface modes. The 301-dimensional eigenvalue problem is solved with g at the
upper limit of the range used to trace the curves for the free-surface modes. The value of g only affects the

free-surface modes. If the end of a free-surface mode curve is marked with a · it is the large g end of the

curve. The end without a · is the low g end. In some cases, it is impossible to tell from the figure because

neither end of the curve is isolated from the flow eigenvalues.

We begin by explaining the flow eigenvalues (the eigenvalues plotted with an ·). There should be no real

components to any of the eigenvalues because we basically have an undamped acoustic system. However,

because the first-order upwind scheme is dissipative, there is a negative real component. The distribution of

flow eigenvalues is similar to what we would see if we performed a double Fourier transform and varied ky
while keeping kx fixed. If we look at the region close to the imaginary axis, we see three distinct branches of

eigenvalues. The middle branch is convective with eigenvalues approximately equal to ikxu1Ds* = 0.02i.

This is the branch closest to the origin. There are many eigenvalues repeated at this point because there

is no y-direction coupling of the convective modes through either the convective matrix Ay or the artificial

dissipation matrix —Ay—. Thus the convective eigenvalues are independent of ky. The upper and lower

branches of eigenvalues along the imaginary axis are acoustic. When ky is zero the acoustic eigenvalues

are equal to ikxðu1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u21 þ b

p
ÞDs� ¼ 0:06i; �0:04i, which are the two points above and below the convec-

tive branch on the imaginary axis. As the eigenmodes become more oscillatory in y, there is a change in the
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Fig. 1. Eigenvalue spectrum for inviscid, steady flow with kxDx ¼ p=16 and Dxg=u21 ¼ 10�2 to 102. The horizontal and vertical lines

are the real and imaginary axis.
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imaginary component of the eigenvalues because the acoustic modes are coupled in y. The amount of dis-

sipation also increases because of the y-direction artificial dissipation terms. The most oscillatory acoustic

modes in y have eigenvalues with the most negative real parts.

From the analytic solution, we expect that the eigenvalues of the free-surface modes to be strictly con-

vective when g is small and acoustic when g is large (Eqs. (34) and (36)). One of the free-surface eigenvalues
follows this behavior, moving along the imaginary axis from the convective branch to the negative imag-

inary acoustic branch. However, the other convective to acoustic transition is missing. Furthermore, we

have two discrete free-surface modes whose imaginary components become infinitely large as g approaches

infinity. The upper one of these two modes crosses the imaginary axis and becomes unstable when g

approaches zero. Thus, the iteration will diverge for small values of g.

When g is small, there is little coupling between the free surface and the flow. If we examine the bound-

ary conditions at the free surface (Eq. (15)), we see that we are trying to fix all three fluxes. Because one

characteristic of Ay propagates towards the free surface, this is unstable. To overcome this problem, we
modify the boundary conditions at the free surface using the kinematic condition. The modified boundary

fluxes are given by
Fig.
F ¼ 0; 0;Dxghj �
r

qDx
ðhjþ1 � 2hj þ hj�1Þ

� �T
� Rfs;j½qb; u1; 0�T: ð42Þ
The second term of this expression uses the residual error of the kinematic condition as a convective flux
through the free surface. In this way, the free surface behaves more like an outflow boundary condition

where the stress is specified, but the convective fluxes are not. The final solution of the equation is unaf-

fected because the added flux term is proportional to the residual of the kinematic condition. This modi-

fication is not necessary for finite-element formulations where the convective terms are not integrated by

parts. In this case, the natural boundary conditions of the formulation are on the stress and not the total

flux.

The results obtained with the modified fluxes are shown in Fig. 2. Now we have two of the four free-sur-

face eigenvalues behaving as predicted by the continuous analysis. These eigenvalues move from the con-
vective branch to the acoustic branches as g increases. We still have a problem with the imaginary

component of the two discrete free-surface eigenvalues. As g increases, the magnitude of these eigenvalues
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2. Eigenvalue spectrum for inviscid, steady flow with kxDx ¼ p=16; Dxg=u21 ¼ 10�2 to 102, and modified boundary fluxes.
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increases indefinitely, which makes the system ill-conditioned. Fig. 3 shows the magnitude of the four free-

surface eigenvalues as a function of gDx=u21. The reason that all the curves do not extend across the domain

is that the Newton–Raphson solver is not always able to find the roots. This usually occurs when the free-

surface mode approaches or merges with the flow modes. On the figure, the smallest magnitude eigenvalue

is the one that passes from the convective branch to the lower acoustic branch. The large magnitude eigen-

values are the discrete free-surface modes. From this figure, we see that, as g increases, the discrete free-

surface eigenvalues increase in magnitude with a square root dependence on g. This behavior also occurs

for other values of kx.
To overcome the stiffness associated with the discrete free-surface eigenvalues, we modify the value of

Ds�fs. We begin by noting that in the limit that g goes to zero the kinematic condition is totally decoupled

from the flow. The eigenvalues associated with the free-surface movement can be determined from the Fou-

rier transform of Eq. (26), which is given by
DxDs�1 þ u1i sinðkxDxÞ � ju1jðcosðkxDxÞ � 1Þ

 �

h� Dxv ¼ 0: ð43Þ
When g is equal to zero, the maximum free-surface eigenvalue is the coefficient of h in this expression eval-

uated with kxDx = p. Dx=Ds�fs should be set equal to this value when g is zero. By experimentation, we have

found that the following expression also works well when g is large:
1

Ds�fs
¼ 2

u1
Dx

þ 1

Ds
þ c

g þ 4r=ðqDx2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u21 þ b

p : ð44Þ
The adjustable constant, c, is given the value of 4. The justification for this is given in the following sections.

Surface tension is included by noting that in Fourier space, the stress term is
g � rð2 cosðkxDxÞ � 2Þ
qDx2

� �
h; ð45Þ
so we can again lump the effects of surface tension and gravity together. The new expression for Ds�fs limits

the free-surface time step in proportion to the surface stresses when g or r is large.
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Fig. 4 shows the eigenvalue spectrum when using Eq. (44). As g increases, the two discrete free-surface

eigenvalues branch off from the acoustic flow eigenvalues. In the limit of g going to infinity, they move to

the position k � �.1 ± 0.4i and remain fixed. To see what happens to the other two free-surface modes, we

have expanded a region of Fig. 4 around the location (0,0). This is shown in Fig. 5. Unlike the previous case

in which we had two eigenvalues that transitioned from convective to acoustic, in this case we have only

one. This mode makes the transition from the convective branch to the lower acoustic branch as g increases.

This curve should merge at both ends with the flow modes, but the Newton–Raphson iteration stops con-

verging as these limits are approached. The second mode is associated with the kinematic condition. When
g is zero, the eigenvalue is approximately iu1kxDs�fs ¼ 0:098i, which is shown on the figure. As g increases, it

merges with the upper acoustic branch and becomes indistinguishable from the flow modes. Fig. 6 shows

the magnitude of the free-surface eigenvalues as a function of g. The largest magnitude eigenvalues are the
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Fig. 5. Expanded view of eigenvalue spectrum for inviscid, steady flow with kxDx ¼ p=16 and Dxg=u21 ¼ 10�2 to 102 with modified

Ds�fs.
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discrete free-surface eigenvalues. This figure confirms that as g becomes large, the magnitude of these eigen-

values remains bounded.

The most important wavelengths for determining multigrid convergence are kxDx = p, and 2/3p. These
wavelengths must be damped well for multigrid to work. Fig. 7 shows the eigenvalues for the high wave-

number case, kxDx = p. The distribution of the flow eigenvalues is much different than the previous case

because the upwind scheme is dissipative at high wavenumbers. The eigenvalues of the discrete free-surface
modes are identifiable as the curves which have a nearly constant imaginary component equal to ±0.3i. The

large g end of the curve is the end closest to the imaginary axis. These eigenvalues are bounded and the real

part is always more negative than the least negative flow eigenvalue so these modes should not limit the
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Fig. 7. Eigenvalue spectrum for inviscid, steady flow with kxDx ¼ p and Dxg=u21 ¼ 10�2 to 102 with modified Ds�fs.
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convergence rate. When g is equal to zero, there is only one other free-surface eigenvalue, which is located

on the real axis at k = �0.19. This eigenvalue merges with the flow eigenvalues when gDx=u21 is equal to

one. Because this eigenvalue has a smaller negative component than any of the flow eigenvalues, it will have

an effect on the convergence rate of the iteration. However, the maximum difference is small (k = �0.19 ver-

sus k = �0.21 for the flow eigenvalues). Furthermore, because the flow convergence rates for the inviscid
case are poor, this difference will not be observable in practice.

When gDx=u21 is increased beyond one, two eigenvalues appear at k = �0.47. In the limit of g going to

infinity, these eigenvalues become fixed at the points marked with an · at the end of the curves originating

from k = �.47. In this limit, the convergence rate should be identical to the convergence rate of a flow with-

out a free surface. We have also examined the eigenvalues for kxDx = 2/3p and found a similar behavior.

Thus, if we eliminated the problems with the inviscid flow preconditioner, the free-surface preconditioner

would be effective for finding solutions to free-surface problems.

To justify the choice of adjustable constant, c in Eq. (44), Fig. 8 shows the evolution of the free-surface
modes as c is varied over the range 0.4–100.0. Dxg=u21 was set to 104 because this is the limit in which c is

important. We again examine kxDx = p. The format of the plot is similar to those shown previously, with

the (black) · denoting the flow eigenvalues and the (red) solid curves tracing the path of the free-surface

modes as c changes. For small values of c, the position of the discrete free-surface modes is outside the

range of the figure. The imaginary component of these modes is approximately ±2i when c is 0.4. Thus,

choosing too small of a value of c will cause stability problems for any explicit pseudo-time advancement

scheme (e.g., the 5-stage RK method). As c is increased, the discrete free-surface modes move in toward the

flow eigenvalues. When c is around 8, these modes merge with the flow eigenvalues. Beyond c = 8, a mode
appears along the real axis and moves toward the point (0,0) with increasing c. This mode then determines

the convergence rate. The real component of the other two free-surface modes remains around �0.6 and

thus does not affect convergence. Fig. 9 shows the real component of the discrete free-surface modes as

a function of c. The horizontal line on the figure denotes the least negative real component of all the flow

eigenvalues. If we choose c = 4, the real component of all the free-surface modes is more negative than the

least negative flow eigenvalue, and the free surface should not affect the convergence rate. The results for

kxDx = 2/3p are similar.
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Fig. 8. Behavior of free-surface eigenvalues for inviscid, steady flow with kxDx ¼ p; Dxg=u21 ¼ 104, and c = 0.4–100.
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5.4. Unsteady, inviscid flow

We next investigate unsteady flow in the limit that the CFL number goes to zero. This is done by setting

u1 to zero. We start with Ds�fs given by Eq. (44). Fig. 10 shows the eigenvalue spectrum for the case of

kxDx = p. In the small g limit, we have three distinguishable free-surface eigenvalues: k = �1.0 and the dis-

crete free-surface modes at �0.37 ± 0.23i. The eigenvalue at �1.0, moves along the real axis and when g is

O(1) merges with the flow eigenvalues at k = �0.667. It then emerges where the flow eigenvalues cross the

real axis at �0.33. With increasing g, it approaches the limiting value of �0.27. The discrete free-surface

eigenvalues loop around and approach the values �0.25 ± 0.28i in the large g limit.
When gDs2/Dx is less than one, none of the free-surface eigenvalues have real part that is less negative

than the flow eigenvalues, and the convergence of the iteration should be unaffected by the presence of the

free surface. However, for larger g, the free-surface modes move closer to the imaginary axis than the flow
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Fig. 10. Eigenvalue spectrum for inviscid, unsteady flow with kxDx = p and gDs2/Dx = 10�3 to 103.
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eigenvalues. This will cause the convergence rate to decrease. Unfortunately, there is no way to eliminate

this problem by modifying the free-surface time step. If we take a larger free-surface time step, the discrete

free-surface eigenvalues (k = �0.25 ± 0.28i) move to a less negative position in the large g limit. If we take a

smaller free-surface time step, the eigenvalue on the real axis moves to a less negative position. Fig. 11

shows the real part of the free-surface modes as a function of c. The choice of c = 4 gives the best possible
result in the large g limit. In this limit, the real part of the free-surface eigenvalues is �0.27 while the least-

negative real component of the flow eigenvalues is �0.33 so this should only have a moderate effect. The

above behavior is also seen at longer wavelengths in x.

5.5. Stokes flow

The low Reynolds number limit is relevant when the grid based Reynolds number, u1Dx/m is order one
or smaller. As mentioned in the discussion of the analytic results, in this limit the free-surface time scales
and the flow time scales diverge. To study this limit, we cannot set u1 to zero because this would cause the

time scale associated with the kinematic condition to go to infinity when g is zero. Instead, we let u1Dx/m be
1/100. The Reynolds number based on the wavenumber, kx is also always kept less than one. When g = 0,

Eq. (44) correctly sets the pseudo-time step for the free surface based on the convective velocity while the

flow pseudo-time step is based on the viscous time scale as determined by Eq. (29).

Fig. 12 shows the evolution of the eigenvalues for kx Dx equal to p. When g = 0, there are three free-

surface eigenvalues. All three are located on the real axis. The first is located at �0.95, the second is at

�0.5, and the third is at �0.156, just to the right of the flow eigenvalues. Because the third eigenvalue is
less negative than the flow eigenvalues it will affect convergence, but the difference is small, �0.156 versus

�0.166 so it should not be a strong effect. With increasing g this eigenvalue moves towards and merges with

the flow eigenvalues when gDx3/m2 is O(10�2). The first two eigenvalues approach each other and branch off

of the real axis around the same value of gDx3/m2. They then wrap around and approach the imaginary axis.

The limiting position is �0.16 ± 0.12i. This is slightly closer to the imaginary axis than the flow eigenvalues

and thus will affect convergence slightly. Unlike the unsteady case, there is no immediate penalty for using a

smaller value of c. The free-surface modes move to larger imaginary values and shift to the left slightly. If

too small a value of c is used, then the imaginary components of the free-surface modes will cause the ex-
plicit pseudo-time advancement scheme to become unstable.
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Fig. 11. Real component of free-surface eigenvalues as a function of c for inviscid, unsteady flow with kxDx = p and gDs2/Dx = 104.



–1 –0.8 –0.6 –0.4 –0.2 0
–0.5

–0.4

–0.3

–0.2

–0.1

0

0.1

0.2

0.3

0.4

0.5

Real(λ)

Im
ag

in
ar

y(
λ)

–1 –0.8 –0.6 –0.4 –0.2 0
–0.5

–0.4

–0.3

–0.2

–0.1

0

0.1

0.2

0.3

0.4

0.5

Real(λ)

Im
ag

in
ar

y(
λ)

Fig. 12. Eigenvalue spectrum for viscous, steady flow with kxDx = p, u1Dx/m = 0.01 and gDx3/m2 = 10�2 to 104.
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5.6. Numerical tests

To verify the optimality of our preconditioner, we examine convergence rates from a SUPG hp-finite-
element discretization of the incompressible Navier–Stokes equations. The numerical scheme is described

in [10]. It is a finite-element discretization of Eq. (6) using triangular elements and a polynomial basis.

Although this scheme allows higher-order polynomials, for simplicity we restrict the study to linear poly-

nomials. When using linear polynomials, the discretization is similar to an unstructured, vertex-based,

finite-volume discretization. The discrete equations are solved using multigrid. The multigrid algorithm

is a full approximation and storage algorithm [23], which means that it obtains the solution to the non-lin-

ear equations not a linear approximation. The prolongation and restriction operators are the standard lin-

ear interpolation operators used on unstructured vertex based triangular meshes [23]. The relaxation
scheme is given by Eq. (27) with a 5-stage RK scheme [21] to advance the solution in s*. Eqs. (28) and
(29) for b and Ds* are generalized for use on an unstructured mesh by the following formulas:
b ¼ 3Q2
max þ

Dmax

2Ds
þ 2m
Dmax

� �2

; ð46Þ

1

Ds�
¼ 8m

1

D2
max

þ 1

D2
min

 !
þ 2

Qmax þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

max þ b
q
Dmin

þ 2

ffiffiffi
b

p

Dmax

þ 1

Ds
; ð47Þ
where Q2
max is the maximum value of U2 + V2 for the three element vertices. Dmax is the maximum length of

the three element sides. Dmin is twice the triangle area divided by Dmax. A ‘‘local time-stepping’’ approach is

used where both b and Ds* can vary across the domain. For the problem studied here, this is not important
because both the flow and mesh are uniform across the domain.

At the free surface, the kinematic condition is upwinded using a SUPG approach. This is described in

[10]. In the formula for Ds�fs, u1 is replaced by velocity of the flow relative to the mesh in the direction tan-

gent to the free surface. For this problem, this is basically the horizontal velocity U. Dx in the formula for

Ds�fs is the length of the edges along the free surface. When we add the surface flux term given in Eq. (42),

we multiply the kinematic equation residual by [qb,U,V] where U and V are the horizontal and vertical
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velocities evaluated at the free-surface mesh points. We also use local time-stepping for the free surface, but

because the flow perturbations are small and the base flow is uniform, this is unimportant.

The test problem is a free-stream flow on a unit square. On the left side of the square is an inflow con-

dition, and on the right side is an outflow condition. The outflow boundary condition is that the viscous

stress is zero. If we use a non-reflecting boundary condition based on the characteristics of the artificial
compressibility system [22] for the outflow, we get slightly better results than those presented here. The

top boundary is a free-surface condition and the bottom boundary is either a slip or no-slip condition

depending on whether the flow is inviscid or viscous. To understand the effect of the free surface on con-

vergence, we compare these results to a case in which the top and bottom of the square are periodic bound-

ary conditions. The mesh is composed of 32 · 32 squares that are then subdivided into triangles. Coarser

meshes in the multigrid cycle have the same structure except the resolution is divided by two. Six levels of

grids are used such that the coarsest grid consists of two triangles.

We examine three flow conditions: (u1 = 1, Ds�1 = 0, m = 0), (u1 = 1, Ds�1 = 3200, m = 0), and (u1 = 1,
Ds�1 = 0, m = 100). These fall into the three limiting conditions investigated in the previous sections. With

this resolution, the second case corresponds to a CFL number based on Dx of 1/100 and a domain length

based CFL of 1/3200. The third case corresponds to a grid spacing based Reynolds number, u1Dx/m, of 1/
3200 and a domain-length based Reynolds number of 1/100. For each case, we examine three different val-

ues of g. For all three cases we examine g equal to zero. The second value of g is chosen so that the two non-

zero terms in Eq. (44) are the same order of magnitude. For example in the inviscid case, g is chosen so that

u1/Dx is equal to g=u21, which gives g = 32. In the third case, this value is increased by a factor of 100. The

values of g used for inviscid flow are then (0,32,3200). For the small CFL number limit, the values of g
chosen are (0,1.0e5,1.0e7). The same values are chosen for the low Reynolds number case.

For initial conditions we use a perturbation to free-stream that includes both high- and low-wavenumber

components
U ¼ u1 þ 1:0e� 4xð1� xÞðsinð2pxÞ þ sinð16pxÞÞðsinð2pyÞ þ sinð16pyÞÞ;

V ¼ þ1:0e� 4xð1� xÞðsinð2pxÞ þ sinð16pxÞÞðsinð2pyÞ þ sinð16pyÞÞ;

P ¼ þ1:0e� 4xð1� xÞðsinð2pxÞ þ sinð16pxÞÞðsinð2pyÞ þ sinð16pyÞÞ:

ð48Þ
The initial position of the free surface is given by
y ¼ 1þ 1:0e� 4ðcosð2pxÞ þ cosð15pxÞÞ: ð49Þ

The small amplitudes of the free surface and flow perturbations are chosen because the interior points of the

mesh are not allowed to move, and we want to ensure that the deformation of the cells at the free surface is

not significant.

The tests are performed using a multigrid W-cycle with two five-stage RK relaxation performed after

each restriction and prolongation phase of multigrid. This is a fairly large number of relaxation steps

on each level of multigrid. We found that if fewer relaxations are used, some of the test cases diverge.
This behavior does not occur when a doubly periodic domain is used, so there is some unfavorable

interaction between multigrid and boundary conditions that is eliminated by using additional relaxation

steps.

Table 1 shows the convergence factors for the problem without a free-surface and the nine free-surface

cases studied. The convergence factor is the ratio of the magnitude of the residuals before and after one

relaxation step. We determine a mean convergence factor by iterating until machine convergence is reached

then fitting an exponential curve to a plot of the residual as a function of iteration number. In fitting the

curve, we ignore the initial region of the curve where faster decaying modes are eliminated and only fit the
data after a nearly constant convergence factor is reached. This convergence factor is then due to the slow-

est decaying mode of the iteration.



Table 1

Convergence rates for various values of g

Gravity No free-surface Zero Medium Large

Inviscid 0.977 0.977 0.977 0.977

Unsteady 0.43 0.46 0.51 0.67

Viscous 0.51 0.53 0.54 0.85
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For the inviscid case, the convergence rates for zero, medium, and large gravity cases are all approxi-

mately equal and the same as found for the problem without a free-surface. Because the flow solver does

a poor job in this limit, the flow eigenmodes limit the convergence rate and the free-surface modes have

little effect. For the unsteady and viscous cases in the zero and medium gravity cases, the convergence rates

are comparable to those without a free surface. This is in agreement with the predictions from the analysis.

In the large gravity limit, the convergence rate of both the unsteady and viscous cases decrease significantly.

Although some degradation in convergence is predicted by the analysis, the amount of degradation shown

in the table is more than we expect, especially in the viscous case.
To determine whether the convergence can be improved in the large g limit, we perform simulations with

various values of the adjustable constant c. The results are shown in Table 2. For the inviscid limit, for the

reasons discussed above, the convergence rate is totally independent of c unless we choose a value less than

or equal to 0.5. If we choose 0.125, the iteration diverges. This is because the imaginary component of the

discrete free-surface eigenvalues becomes large and moves outside the stability region of the 5-stage RK

scheme.

For the unsteady case, the convergence factor improves as c is decreased until a minimum is reached at

c = 1. The minimum occurs at 1 instead of 4 because of differences between the SUPG finite-element for-
mulation and the finite-volume scheme we are analyzing. Analysis of the SUPG scheme gives better agree-

ment with the numerical tests. This shows that although we have the correct scaling for Ds�fs, the precise

optimal value is scheme dependent. For the viscous case, we arrive at a similar conclusion.

Both the unsteady and viscous cases show non-monotonic behavior of the convergence factor for small

values of c. This is a consequence of the 5-stage RK scheme. The damping rate of this scheme does not

monotonically decrease as the stability boundaries are approached; there are local minima. These local min-

ima lead to variations in convergence rate as the free-surface eigenvalues move toward the stability bound-

ary of the scheme.
Comparing the convergence factors at c = 1 in Table 2, to the convergence factors at zero and medium

values of g, we see that there is only a small variation in the convergence factor. Thus, the free-surface

preconditioner can be used in all limits with little degradation in convergence rate. If a more effective flow

solver for the inviscid case was used, we might uncover an effect of the free-surface boundary condition.

However, the analysis indicates that the free-surface modes are as easily damped as the acoustic modes

so this will probably not be true. Based on these results, we conclude that there is no reason to use more

complex/less-physical free-surface preconditioners. By choosing the correct value of Ds�fs, this simple pseu-

do-time-advancement free-surface preconditioner can be used to obtain solutions efficiently in all limits.
Table 2

Convergence rates for various values of c in the large g limit

c 16 8 4 2 1 0.5 0.25 0.125

Inviscid 0.977 0.977 0.977 0.977 0.977 0.978 0.979 U

Unsteady 0.91 0.83 0.67 0.61 0.50 0.58 0.53 U

Viscous 0.94 0.91 0.85 0.73 0.50 0.52 0.53 0.51
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6. Interfacial flows

In this section, we extrapolate the results obtained for free-surface flows to interfacial flows. The contin-

uous problem is two, infinite depth, incompressible fluids of different density, qt and qb, and kinematic vis-

cosity, mt and mb flowing parallel to each other. The subscripts t and b denote the top and bottom fluid,
respectively. The fluids are separated by an interface upon which surface tension acts. In the inviscid case,

the two fluids are allowed to have different free-stream velocities u1,t and u1,b. Both fluids are governed by

Eq. (19), however for the interfacial problem, it is more convenient to leave the momentum equations

weighted by the density. At the interface, we have the condition that the jump in normal stress is balanced

by surface tension. In the inviscid case, the tangential stress on both fluids at the interface is zero. In the

viscous case, the jump in tangential stress is zero. These conditions are similar in form to Eqs. (17) and

(18) except that when the boundary condition is a jump condition the left hand side is a jump in flux across

the interface.

6.1. Discrete formulation

Because inviscid flow allows a slip velocity between the two fluids while viscous flow does not, the dis-

crete formulations are different for the two cases. We begin with the inviscid case. Because the pressure and

perturbation to the tangential velocity, u, can be discontinuous across the interface we enforce conservation

of mass and tangential momentum individually for half cells above and below the interface. This is done

exactly as was done for the free-surface case. Normal momentum requires more consideration because these
values are related across the interface by the constraint that the normal velocity be continuous. For the lin-

earized problem, this constraint is
u1;b

oh
ox

� vb ¼ u1;b

oh
ox

� vb: ð50Þ
The number of unknowns in the problem should be reduced by one using this constraint. This is done by

introducing a new variable at the interface
�v ¼ qtDytvt þ qbDybvb
Dytqt þ Dybqb

: ð51Þ
This is a mass-averaged velocity for the cell at the interface. vt and vb are the vertical flow velocities of the

upper and lower fluid at the interface. We also have allowed for different mesh spacings normal to the inter-

face, Dyt and Dyb.
Using the variable �v and relation (50) we can write expressions for vt and vb in terms of h and �v:
vb ¼ �vþ qtDyt
qtDyt þ qbDyb

ðu1;t � u1;bÞ
oh
ox

;

vt ¼ �v� qbDyb
qtDyt þ qbDyb

ðu1;t � u1;bÞ
oh
ox

:

ð52Þ
Note that when the free-stream velocities are equal, these equations simply require that the normal velocity

be continuous.
Following the methodology for the free-surface problem, normal momentum conservation equations are

formed for the half cell above and below the interface. The fluxes at the interface for each half cell are as yet

unspecified. Substituting the relations given by Eq. (52), these equations can be written in terms of �v and h
instead of vt and vb. If we add the two equations together, we get a single evolution equation for �v. Fur-
thermore, the unspecified fluxes at the interface subtract and thus result in a flux jump at the interface. This

can be replaced by the stress term
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Dxððqb � qtÞghj � r
hjþ1 � 2hj þ hj�1

Dx2
Þ;
which closes the formulation.

The only other place that vt or vb appears is the kinematic condition. This can also be written totally in

terms of �v. Because the normal velocity must be continuous, both of the following equations hold:
oh
ot

þ u1;b

oh
ox

� vb ¼ 0;

oh
ot

þ u1;t
oh
ox

� vt ¼ 0:

ð53Þ
Mass averaging both equations in a manner similar to that shown in Eq. (51) gives
oh
ot

þ �u1
oh
ox

� �v ¼ 0; ð54Þ
where �u1 is the mass-averaged free-stream velocity calculated in the same way as �v. This eliminates any

explicit dependence on vt or vb, which shows that vt and vb are auxiliary variables not needed to describe

the system�s evolution. It also shows that the characteristic velocity for the interface is the mass-averaged
free-stream velocity, �u1.

For the viscous case, the formulation is simpler because both u and v are continuous at the interface. We

can then add the half cells above and below the interface for normal and tangential momentum to reduce

the dimension of the system. The stress jumps at the interface can then be replaced using the jump equa-

tions. The pressure is discontinuous so discrete continuity is enforced individually for the half cell above

and below the interface.

6.2. Preconditioning

The flow preconditioner remains the same as in previous cases. The only difference is that the precondi-

tioner for the momentum equations has an additional density weighting because we did not divide the

momentum equations by the density. b and Ds* are chosen separately for each fluid. For any variable at

the interface that is continuous (�v in the inviscid case and u and v in the viscous case), a mass-averaged time

step is used
qtDxDyt
Ds�t

þ qbDxDyb
Ds�b

� �
owj;0

os�
þ Rj;0ðwÞ ¼ 0: ð55Þ
When qt is zero, this gives exactly the same result as in the free-surface case. When both fluids are the iden-

tical, it gives the same results as for a cell in the interior of the domain. Thus, at least in these two limits this
form is correct.

Similar to the free-surface case, the residual of the kinematic condition is used as a convective flux

through the interface of the form
�Rfs;j qb; qu1; 0½ �T: ð56Þ

This flux is added to the half cell below the interface using qb = qbbb and qu1 = qbu1,b and subtracted

from the half cell above the interface using qb = qtbt and qu1 = qtu1,t. For the viscous case, the horizontal

momentum term is added and subtracted from the same equation because tangential velocity is continuous

across the interface. If there is no density change across the interface, these terms cancel. If there is a density

change, a source term of magnitude �Rfs,j(qb � qt)u1 is added.
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The interfacial time step, Ds�fs, is given by
Fig. 13

r = 10
1

Ds�fs
¼ 2�u1=Dxþ Ds�1 þ c

ðqb � qtÞg þ 4r=Dx2

qt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u21;t þ bfs;t

q
þ qb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u21;b þ bfs;b

q : ð57Þ
When g and r are zero, the interface is decoupled from the flow, and the above form should be correct

based on the fact that �u1 is the characteristic velocity for the interface. When qt is zero, the free-surface
results are recovered. The one questionable limit is when the surface stresses are large and the artificial

speeds of sound (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u21 þ b

p
) are much different in each fluid. There are other ways to average the artificial

speeds of sound such as ðqt=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u21;t þ bt

q
þ qb=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u21;b þ bb

q
Þ=ðqt þ qbÞ

2
which can give much different results.

To test this limit, we examine the following case: kxDx = p, u1,t = u1,b = 1, qt = qb = 1, lb = 1,

lt = 1000, and r = 1000. Because of the large difference in viscosity of the two fluids, the values of b are

much different and thus so are the artificial speeds of sound. For the interface problem, we have only imple-

mented the brute force eigenvalue technique so we only show the eigenvalues for this single condition. The

eigenvalue problem has approximately 600 degrees of freedom because the top and bottom fluids each con-
tain 100 points. Fig. 13 shows the eigenvalue spectrum. The conditioning of the system is as good as the

free-surface cases, so this is the right form for the interface preconditioner. For the second averaging meth-

od mentioned above, two eigenvalues approach zero causing the system to be ill-conditioned. This result

also confirms that the mass-averaged time step for the flow variables at the interface is correct; the time

steps of the two fluids are very different so if this average was incorrect, we would see poor conditioning.

Based on comparison to results of the previous sections, the interfacial preconditioner should be correct

when we have the same fluids on top and bottom, when the density of the upper fluid goes to zero, and,

based on Fig. 13, when the time scales of the two fluids are very different. Because we have only imple-
mented the brute force method for finding the eigenvalue spectrums, we confirm these conclusions using

numerical tests.

6.3. Numerical tests

To validate the interfacial preconditioner, we use a similar problem to that used for the free-surface

validation. In this case however, we have two square domains that are vertically adjacent. The boundary
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between the domains is the interface. The code we are using for the numerical tests was written for viscous

interfacial flows and thus does not allow a jump in slip velocity at the interface. For this reason, we modify

the cases we study. We again study three limits, but instead of setting the viscosity to zero, we have a finite

viscosity in all cases. In addition, we limit the study to problems in which the upper and lower fluid have the

same free-stream velocity. This is done to be consistent with the no-slip condition across the interface and
also because a jump in free-stream velocity causes physical instabilities. Because gravity has no effect when

the density of the top and bottom fluid is identical, we use surface tension to study the large stress limit.

Periodic boundary conditions are used because all the problems are viscous and there is no possibility of

non-uniqueness of the solution due to slip. It is also easier for us to apply surface tension in the periodic

problem. We use the same initial conditions as for the free-surface cases. The only change is that in the

medium and large surface tension limits, we reduce the amplitude of the free-surface perturbation to

10�6 and 10�8, respectively. With large values of surface tension, the smaller perturbation is necessary to

avoid interfacial oscillations greater than the grid size. The only other difference from the free-surface case
is that the adjustable parameter, c, is given the value of 1 which matches the optimum found from the free-

surface tests.

Table 3 shows the results for the inviscid limit. Six cases are studied. For all of the cases, the Reynolds

number based on the grid scale for both the upper and lower fluid is 100. The Reynolds number based on

the domain length is then 3200. The first three cases correspond to the zero, medium, and large stress limits

for fluids that have equal densities and viscosities. The second three cases have a density ratio of 1/100. For

the second three cases, the viscosity of the upper fluid was reduced in the same ratio as the density such that

the Reynolds number of the upper flow is kept the same. The viscosity is of secondary importance in deter-
mining the convergence factor because the flow is high Reynolds number.

Examining the first three cases, we see that we have convergence factors in all three limits that are slightly

better than both the inviscid case with no surface and the free-surface problem. This is because we have a

finite viscosity. Viscosity provides damping on the convective modes which improves the convergence rate.

We see almost no difference between the three different stress cases because the convergence is again limited

by the flow solution. For the last three cases, the convergence factors are almost indistinguishable from the

first three. Thus, the density ratio change of 1/100 has almost no impact on the convergence factor. This

confirms that the density weighted averages of the flow and interfacial time steps are correct in the inviscid
limit.

Table 4 shows the convergence factors for the unsteady limit. The Reynolds number is kept the same as

in the inviscid case. The CFL number is 1/100 based on the grid scale and 1/3200 based on the domain

length. We again study the three limits of zero, medium, and large stress based on the ratio of the unsteady

and stress terms in Eq. (57). As in the previous case, a density ratio of 1 and 1/100 is studied. The conver-

gence factors show very little dependence on the density ratio again confirming that the density-weighted

averages are correct. For the low and medium stress cases, the convergence rates are nearly the same,

but there is a noticeable decrease in convergence rate in the large stress limit. This is the most difficult limit
to get good convergence rates because, as shown in Fig. 10 for the free-surface case, there is a local
Table 3

Interfacial flow convergence factors in the inviscid limit

qt/qb lt/lb qbu1Dx/lb u1Ds/Dx r=ðqbu21DxÞ Factor

1 1 100 0 0 0.963

1 1 100 0 32 0.961

1 1 100 0 3200 0.961

1/100 1/100 100 0 0 0.964

1/100 1/100 100 0 1 0.958

1/100 1/100 100 0 100 0.958



Table 4

Interfacial flow convergence factors in the unsteady limit

qt/qb lt/lb qbu1Dx/lb u1Ds/Dx rDs2/(qbDx
3) Factor

1 1 100 1/100 0 0.48

1 1 100 1/100 1 0.51

1 1 100 1/100 100 0.65

1/100 1/100 100 1/100 0 0.47

1/100 1/100 100 1/100 1 0.57

1/100 1/100 100 1/100 100 0.65

Table 5

Interfacial flow convergence factors in the viscous limit

qt/qb lt/lb qbu1Dx/lb u1Ds/Dx r/(u1lb) Factor

1 1 1/3200 0 0 0.58

1 1 1/3200 0 1 0.43

1 1 1/3200 0 100 0.48

1 1/100 1/3200 0 0 0.59

1 1/100 1/3200 0 1 0.47

1 1/100 1/3200 0 100 0.50
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minimum in the real component of the free-surface eigenvalues. This minimum is less negative than the flow

modes so the convergence rates are affected by the presence of a free-surface or interface.

The results for the viscous case are shown in Table 5. For all cases, the Reynolds number based on the

grid scale and the lower fluid properties is 1/3200. The Reynolds number based on the domain length is 1/

100. For the first three cases, the density and viscosity ratio is 1 and the upper and lower fluid conditions are

the same. For the second case, the density ratio is kept at one while the upper fluid viscosity is decreased by

a factor of 100. This makes the Reynolds number based on the upper fluid properties 1/32 when using the

grid scale and 1 when using the domain length. Because we are in the low Reynolds number limit, the den-
sity has a secondary effect on converge and we do not investigate the effect of density ratio. Examining the

results, we see that the convergence rates are nearly independent of viscosity ratio. We also see that the re-

sults are very good for the medium and large stress limit. The slowest converging case is the zero stress limit.

For the free-surface case, in the low stress limit one free-surface eigenvalue becomes slightly less negative

than the flow eigenvalues slowing the convergence rate (Fig. 12 and discussion). Although this did not have

a strong effect on the convergence rates for the free-surface problem, it seems to have a more significant

effect in the interfacial case. However, the convergence rate is still very good which gives final confirmation

that the interface preconditioner is correct.
7. Conclusions

We have investigated preconditioners for arbitrary-Lagrangian–Eulerian incompressible free-surface

and interfacial flow simulations. The free-surface preconditioner is based on a quasi-physical movement

of the free surface in a ‘‘pseudo-time’’ iteration. We discovered that for this to be successful the surface

fluxes must be modified to have a convergent iteration. The modification involves using the error in the
kinematic condition as an artificial convective flux through the surface. We also found that there are surface

eigenvalues that have no counterpart in the continuous problem and these eigenvalues can cause the system

to become ill-conditioned when surface tension or gravity becomes large. This problem can be overcome by

using a iterative time step for the advancement of the free-surface position that is independent of the flow



308 B.T. Helenbrook / Journal of Computational Physics 207 (2005) 282–308
time-step. We have determined the proper scaling for this time step, such that convergence rates compara-

ble to a simulation without a free surface can be obtained for all combinations of flow and free-surface

parameters. Prior to this analysis, many different approaches for solving free-surface problems have been

tried, but none have been demonstrated to be applicable for all flow conditions.

We also extended the free-surface preconditioner for application to interfacial flows. This extension in-
volved calculating iterative time steps and artificial speeds of sound using a mass averaging technique for

the interfacial grid cells. This technique produces the correct results in the limits of identical fluids or a free-

surface flow. We also verified that it produces well-conditioned results when the characteristic time scales of

the two fluids are very different. As for the free-surface case, this is the first time that a preconditioner for

interfacial flow has been identified that works well under all flow conditions.
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